

2-Pyrimidylphosphines: A New Class of Ligands for Transition Metal Catalysis

Manfred T. Reetz,* Ralf Demuth and Richard Goddard

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, Germany

Received 24 June 1998; accepted 19 July 1998

Abstract: The synthesis of 2-pyrimidyldiphenylphosphine (2), bis-2-pyrimidylphenylphosphine (3) and tris-2-pyrimidylphosphine (4) is described. Ligand 2 forms cationic complexes with palladium(II) in which four-membered P/N-chelates are involved, leading to a very active catalyst for the carbonylation of alkynes. © 1998 Elsevier Science Ltd. All rights reserved

Although triphenylphosphine is known to serve as the standard ligand for a wide variety of transition metal catalyzed reactions,¹ it is not well suited for a significant number of organic transformations. In such cases phosphines having different electronic and/or steric properties have been developed, tris-2-furanylphosphine² and 2-pyridyldiphenylphosphine (1)³ being two prominent examples. The Shell process for the carbonylation of propyne with formation of methacrylic acid ester is based on cationic Pd catalysts stabilized by 1 under acidic conditions, labile four-membered P/N-chelates of palladium being the proposed (but never proven) catalytic intermediates.^{3a-b} In this communication we describe the synthesis of the 2-pyrimidylphosphines 2, 3 and 4 as well as initial observations regarding their use as ligands in some Pd-catalyzed transformations.

The starting material in all three syntheses was chosen to be commercially available 2-chloropyrimidine 5, as shown below.⁴ The phosphines $2,^5$ 3 and 4 were characterized by standard methods, including ³¹P NMR spectroscopy ($\delta = 4.1$, 8.9 and 14.6 ppm, respectively, compared to -5.6 ppm for PPh₃) and by X-ray crystallography, which shows no significant geometric changes relative to PPh₃.^{4a} Thus, primarily electronic effects (electron withdrawing), the possibility of P/N coordination and/or N protonation are to be expected of ligands 2-4 in relevant cases.

Various Pd complexes of the phosphines were prepared, e. g., those based on the ligand 2. Whereas the crystal structure of the PdCl₂ adduct 6⁶ reveals only Pd-P coordination, that of the cationic complex 7⁷ involves two four-membered palladacycles based on P/N coordination (Fig. 1). In light of these observations, Drent's postulate ^{3a-b} of similar complexes based on P/N coordination of the analogous pyridylphosphine 1 seems quite reasonable.

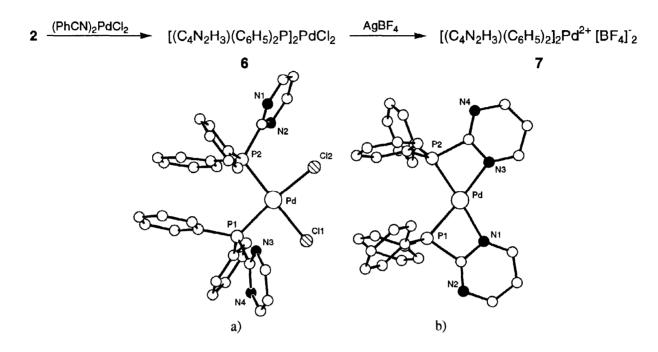


Fig. 1. Crystal structures of a) 6 (P1-Pd-P2 97.71(2)°) and b) 7 (dication, P1-Pd-P2 105.48(3), N1-Pd-N3 113.0(1), P1-Pd-N1 70.8(1), P2-Pd-N3 70.6(1)°)

We first tested the ligands 2-4 in a standard Heck reaction involving bromobenzene and styrene. Using 1 mol-% Pd(OAc)₂ and 5 mol-% of a ligand in N-methylpyrrolidone as solvent and NaOAc as base (130 °C/6 h), rather different results were obtained, depending upon the nature of the ligand. In the case of 2, 80 % of E-stilbene was obtained, similar to the use of PPh₃. However, upon using 3 and 4, the yield dropped to 48 % and 3 %, respectively, showing that the increasing electron-withdrawing effect of the pyrimidyl moieties is detrimental to the Heck reaction.

Pronounced ligand effects were also observed in the carbonylation of alkynes^{3a-b,8} (e. g., $8a \rightarrow 9a$). Using only 0.057 mol-% Pd(OAc)₂ and an excess of phosphine in the presence of CH₃OH containing some CH₃SO₃H,^{3a-b} conversion to 9a after 2 h varied drastically according to the nature of the ligand: PPh₃ (14 %); 2 (>97%); 3 (70 %); 4 (2 %, after 17 h: 29 %). Thus, compound 2 is the ligand of choice. A TOF of 7000 h⁻¹ was easily achieved. The system is at least as active as the one based on 1^{4a} . It is therefore very probable that under the acidic conditions P/N-chelates of palladium as well as protonated pyrimidyl moieties are involved (which intramolecularly deliver protons onto the vinyl-palladium intermediate in the last stage of the catalytic cycle, similar to the proposed mechanism in the case of ligand 1). If the ligand contains too many electron-withdrawing pyrimidyl residues, the proper balance of electron effects is disturbed adversely.

RC=CH
$$\frac{\text{CO/CH}_3\text{OH}}{\text{Pd(OAc)}_2/2}$$

RC=CH $\frac{\text{CO/CH}_3\text{OH}}{\text{Pd(OAc)}_2/2}$

RC=CH $\frac{\text{CO}_2\text{CH}_3}{\text{CO}_2\text{CH}_3}$

8 a) R = n -C₄H₉

9 a) > 97 %

b) R = t -C₄H₉

c) R = C₆H₅

c) > 97 %

d) R = Si(CH₃)₃

d) 25 %

Internal alkynes 10 can also be carbonylated,⁸ the results being comparable or better than those obtained in other catalytic systems.⁹

RC=CR
$$\frac{\text{CO/CH}_3\text{OH}}{\text{Pd(OAc)}_2/2}$$

RC=CR $\frac{\text{CO/CH}_3\text{OH}}{\text{Pd(OAc)}_2/2}$

RC=CR $\frac{\text{CO}_2\text{CH}_3}{\text{Pd(OAc)}_2/2}$

RC=CR $\frac{\text{CO}_2\text{CH}_3}{\text{Pd(OAc)}_2/2}$

RC=CR $\frac{\text{R}}{\text{Pd(OAc)}_2/2}$

RC=CR $\frac{\text{R}}{\text{Pd(OAc$

In summary, the 2-pyrimidylphosphine 2 is an excellent ligand for the Pd-catalyzed carbonylation of alkynes. An X-ray structural analysis has identified for the first time intermediate cationic four-membered chelates based on P/N complexation which are relevant in these catalytic reactions.

ACKNOWLEGEMENT

R. Demuth thanks the Fonds der Chemischen Industrie for a doctoral Chemiefonds-Stipend.

REFERENCES AND NOTES

- a) Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis: the Applications and Chemistry of Soluble Transition metal complexes; 2nd ed., Wiley: New York, 1992. b) Cornils, B.; Herrmann, W. A., Eds.; Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Two Volumes; VCH: Weinheim, 1996.
- a) Niwa, E.; Aoki, H.; Tanaka, H.; Munakata, K. Chem. Ber. 1966, 99, 712-713. b) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585-9595. c) Sonesson, C.; Larhed, M.; Nyqvist, C.; Hallberg, A. J. Org. Chem. 1996, 61, 4756-4763. d) Gundersen, L.-L. Acta Chem. Scand. 1996, 50, 58-63. e) Srogl, J.; Allred, G. D.; Liebeskind, L.S. J. Am. Chem. Soc. 1997, 119, 12376-12377. f) Shirakawa, E.; Yoshida, H.; Kurahashi, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 1998, 120, 2975-2976. g) Utimoto, K.; Toda, N.; Mizuno, T.; Kobata, M.; Matsubara, S. Angew. Chem. 1997, 109, 2886-2888; Angew. Chem., Int. Ed. Engl. 1997, 36, 2804.
- 3. a) Drent, E.; Arnoldy, P.; Budzelaar, P. H. M. J. Organomet. Chem. 1994, 475, 57-63. b) Drent, E.; Arnoldy, P.; Budzelaar, P. H. M. J. Organomet. Chem. 1993, 455, 247-253. c) Maisonnet, A.; Farr, J. P.;

- Olmstead, M. M.; Hunt, C. T.; Balch, A. A. Inorg. Chem. 1982, 21, 3961-3967. d) Suzuki, T.; Kita, M.; Kashiwabara, K.; Fujita, J. Bull. Chem. Soc. Jpn. 1990, 63, 3434-3442. e) Ecke, A.; Keim, W.; Bonnet, M. C.; Tkatchenko, I.; Dahan, F. Organometallics 1995, 14, 5302-5307.
- 4. a) Demuth, R. Dissertation, Universität Köln, 1998. b) Synthesis of 2: In a Schlenk tube (under Ar) a solution of diphenylphosphine (8.7 ml, 50 mmol) in dry THF (35 ml) is cooled to -18 °C and treated dropwise with 31.2 ml of a 1.6 M solution of *n*-butyllithium in hexane (50 mmol). After stirring for 1 h, 2-chloropyrimidine 5 (5.7 g, 50 mmol) is slowly added. Following removal of the cooling bath, stirring is continued for 4 h, followed by the addition of H₂O (50 ml) and two extractions with ethyl acetate (30 ml). The solvent is removed and the residue crystallized from CH₃OH/CH₂Cl₂ (5:1), resulting in colorless crystals of 2 (7.6 g, 58 %); mp 128 °C.
- 5. During our work another group has reported the synthesis of 2: Li, S.; Zhang, Z.-Z.; Mak, T. C. W. J. Organomet. Chem. 1997, 536-537, 73-86.
- 6. X-ray analysis of 6: $C_{32}H_{26}Cl_2N_4P_2Pd^{\circ}CH_4O$, $M_r = 737.85$ g mol⁻¹, yellow prism, crystal size $0.25 \times 0.28 \times 0.39$ mm, monoclinic, $P2_1/n$ [No. 14], a = 10.902(1), b = 18.501(2), c = 16.528(2) Å, $\beta = 107.14(1)^{\circ}$, V = 3185.4(7) Å³, T = 293 K, Z = 4, $d_{cal} = 1.54$ g cm⁻³, $\mu = 0.89$ mm⁻¹, Enraf-Nonius CAD4 diffractometer, $\lambda = 0.71069$ Å, $\omega 2\theta$ -scan, 7261 independent reflections, 5823 observed $[I > 2\sigma(I)]$, $[(\sin\theta)/\lambda]_{max} = 0.65$ Å⁻¹, no absorption correction, direct methods (SHELXS-97, Sheldrick, G. M. Acta Cryst. 1990, A46, 467-473), least-squares refinement (on F_0^2 , SHELXL-97, Sheldrick, G. M., University of Göttingen, 1997), H riding, methanol of crystallization disordered (50:50), 386 refined parameters, $R_1 = 0.031$ (obs. data), $wR_2 = 0.079$ (Chebyshev weights), final shift/error 0.001, residual electron density +0.629 eÅ⁻³.
- 7. X-ray analysis of 7: $C_{32}H_{26}B_2F_8N_4P_2Pd^.0.25O$, $M_r = 812.5$ g mol⁻¹, orange plate, crystal size $0.07 \times 0.37 \times 0.40$ mm, monoclinic, P2/a [No. 13], a = 15.649(2), b = 13.087(1), c = 16.840(1) Å, $\beta = 103.72(1)^\circ$, V = 3350.4(5) Å³, T = 100 K, Z = 4, $d_{cal} = 1.61$ g cm⁻³, $\mu = 0.73$ mm⁻¹, Enraf-Nonius CAD4 diffractometer, $\lambda = 0.71069$ Å, $\omega \cdot 2\theta$ -scan, 7555 independent reflections, 5628 observed $[I > 2\sigma(I)]$, $[(\sin\theta)/\lambda]_{max} = 0.65$ Å⁻¹, analytical absorption correction (T_{min} 0.7953, T_{max} 0.9507), direct methods (SHELXS-97, Sheldrick, G. M. Acta Cryst. 1990, A46, 467-473), least-squares refinement (on F_o^2 , SHELXL-97, Sheldrick, G. M., University of Göttingen, 1997), H riding, solvent of crystallization (O, refined occupancy 0.25), 447 refined parameters, $R_I = 0.040$ (obs. data), $wR_2 = 0.101$ (Chebyshev weights), final shift/error 0.001, residual electron density +1.391 eÅ⁻³ (1.04 Å from F6). Atomic coordinates and e.s.d.'s for both crystal structures (6 and 7) have been deposited at the Cambridge Crystallographic Data Centre.
- 8. General procedure for the carbonylation of alkynes:^{4a} An autoclave is charged with methanol (30 ml), N-methylpyrrolidone (10 ml), Pd(OAc)₂ (5.6 mg, 0.025 mmol), ligand **2** (264.3 mg, 1 mmol), methanesulfonic acid (2.3 mmol) and 1-hexyne (43.5 mmol). It is filled with CO (60 bar) and heated to 60 °C for 2 h. In the case of sterically hindered substrates such as **8b**, 0.31 mol-% of Pd(OAc)₂ is used. Thereafter the autoclave is cooled to room temp., and the contents is filtered through SiO₂ prior to analysis by gas chromatography.
- 9. Other catalysts in carbonylation reactions of alkynes: a) Reppe, W. Justus Liebigs Ann. Chem. 1953, 582, 1-37. b) Zargarian, D.; Alper, H. Organometallics 1993, 12, 712-724. c) Itoh, K.; Miura, M.; Nomura, M. Tetrahedron Lett. 1992, 33, 5369-5372. d) Monteiro, A. L.; Lando, V. R.; Gasparini, V. Synth. Commun. 1997, 27, 3605-3611.